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Abstract

Autonomous mobile robots need very reliable nav-
igation capabilities in order to operate unattended
for long periods of time. This paper reports on
first results of a research program that uses par-
tially observable Markov models to robustly track
a robot’s location in office environments and to di-
rect its goal-oriented actions. The approach ex-
plicitly maintains a probability distribution over the
possible locations of the robot, taking into account
various sources of uncertainty, including approxi-
mate knowledge of the environment, and actuator
and sensor uncertainty. A novel feature of our ap-
proach is its integration of topological map infor-
mation with approximate metric information. We
demonstrate the robustness of this approach in con-
trolling an actual indoor mobile robot navigating
corridors.

1 Introduction
We are interested in the task of long-term autonomous nav-
igation in an office environment (with corridors, foyers, and
rooms). While the state of the art in autonomous office nav-
igation is fairly advanced, it is not generally good enough to
permit robots to traverse corridors for long periods of time
without getting lost. Evidence for this can be seen in re-
cent AAAI-sponsored robot competitions [Konolige, 1994;
Simmons, 1995], where the robots often got confused as to
where they were, and had difficulty relocalizing once that oc-
curred.

We contend that navigation can be made more reliable by
having the robot explicitly represent spatial and sensor uncer-
tainty. To this end, we have developed a navigation technique
that uses Markov models to robustly track the robot’s posi-
tion and direct its course. A partially observable Markov de-
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cision process (POMDP) model is constructed from topolog-
ical information about the connectivity of the environment,
approximate distance information, plus sensor and actuator
characteristics. The Markov model estimates the position of
the robot in the form of probability distributions. The proba-
bilities are updated when the robot reports that it has moved
or turned, and when it observes features such as walls and
corridor junctions. To direct the robot’s behavior, a planner
associates a directive (e.g., turn or stop) with every Markov
state. Whenever the probability distribution of the Markov
model is updated, the total probability mass for each directive
is calculated, and the robot executes the one with the largest
probability mass.

Our approach has several features that make it well-suited
for the office navigation task. It explicitly accounts for uncer-
tainty in actuation, sensor data and their interpretation, and
the robot’s position. It can utilize all available sensor in-
formation to track position, and is particularly amenable to
adding new sources of sensor information. It seamlessly com-
bines topological and metric map information, enabling the
robot to utilize as much, or as little, metric information as it
has available. It is also very reactive – once the robot believes
it has strayed from the nominal (optimal) path, it will auto-
matically execute corrective actions. On the other hand, it is
relatively immune to temporary uncertainty in position. For
example, even if the robot does not know for certain which
of two parallel corridors it is traversing, it does not stop and
replan, as long as the control directives associated with both
corridors are the same. In this way, it can continue making
progress towards its desired goal, while at the same time col-
lecting sensor readings to help disambiguate its true location.

An important aspect of this work is that it must run in real
time on board an actual robot. Problems include not only
how to model the navigation problem as a POMDP, but also
how to deal with memory and time constraints. While still
preliminary, our experimental results, both in simulation and
on the actual robot, are encouraging. In particular, they indi-
cate that the approach produces very robust navigation, even
when using estimates of the actual sensor and action mod-
els. While, to date, we have concentrated more on imple-
mentation and validation aspects of the approach, our work
opens up new application areas for more theoretical results
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in the area of planning with Markov models, including some
of our own group’s work [Chrisman, 1992; Goodwin, 1994;
Koenig and Simmons, 1994].

2 Related Work
Most recent work in robotic office navigation has used a
landmark-based approach that relies on topological maps
whose nodes correspond to landmarks (locally distinctive
places), such as corridor junctions, and whose edges indi-
cate how the robot should navigate between nodes [Korten-
kamp and Weymouth, 1994; Kuipers and Byun, 1988]. This
approach is attractive because it does not depend on geomet-
ric accuracy and is reactive to sensed features of the envi-
ronment (the landmarks). It suffers, however, from problems
of sensors occasionally not detecting landmarks and of sen-
sor aliasing (not being able to distinguish between similar
landmarks). On the other hand, using purely metric maps
is vulnerable to inaccuracies in both the map making and
dead-reckoning abilities of the robot. While some researchers
augment topological maps with approximate metric informa-
tion, such information is primarily used to resolve topolog-
ical ambiguities [Kuipers and Byun, 1988; Mataric, 1991;
Simmons, 1994]. In contrast, our Markov model approach
seamlessly integrates topological, landmark-based, informa-
tion and approximate metric information.

Some navigation techniques represent uncertainty in posi-
tion using models that presume a certain probability distribu-
tion, typically Gaussian [Kosake and Kak, 1992; Smith and
Cheeseman, 1986]. While such models are efficient to en-
code and update, they are not ideally suited for office navi-
gation. In particular, due to sensor aliasing, one often wants
to encode the belief that the robot might be in one of a num-
ber of non-contiguous locations. This cannot be represented
precisely using Gaussian distributions, but is quite easy for
our Markov models. On the other hand, we need to tessel-
late space into discrete states, rather than representing posi-
tion using real numbers. Thus, there is a tradeoff between
the precision and expressiveness of the different models. We
contend that for office navigation, however, that the added ex-
pressiveness of the Markov models outweighs the decrease in
precision from discretization.

Like our own work, several researchers have investigated
Bayesian approaches for probabilistic planning and execution
monitoring in office navigation. [Nourbakhsh et al., 1995]
use a partially observable Markov model approach similar to
ours, but do not utilize any metric information. The states
of the robot are either at a topological node, or somewhere
in a connecting corridor. In contrast, our approach can use
estimates of how far the robot has traveled and sensor reports
that occur within a corridor to further constrain the robot’s
location. For example, knowing that two corridor junctions
are approximately 5 meters apart enables the robot to estimate
when it is in the vicinity of the second junction, even if it
misses seeing the junction.

Most of the other Bayesian approaches rely on metric
maps. [Kirman et al., 1991] and [Nicholson and Brady, 1994]

use approaches based on temporal belief networks. With
such methods the size of the models grows linearly with
the amount of temporal lookahead, which limits their use to
rather small lookaheads. [Dean et al., 1993] use robot navi-
gation as an example to describe a planning and monitoring
algorithm that uses a totally observable Markov model, which
assumes that the location of the robot is always known pre-
cisely. [Hu and Brady, 1994] use Bayesian techniques to de-
tect unforeseen obstacles in an otherwise completely known
environments.

3 Constructing the Markov Models
Before describing how we construct Markov models of an
office environment, we introduce some terminology. A finite
Markov model consists of a finite set of states

�
, a finite set

of actions � , a set of actions �������	�
� for each state ��� �
,

that can be executed in that state, and transition probabilities ������� ������� for all ��������� �
and ����������� (the probability that

the new state is � � if action � is executed in state � ). We also
define a set of sensors ����� . The sensors are characterized
by observation probabilities �� �! "� ��� for all �#� �

and  
�$ �%�&� (the probability that sensor � reports feature  when the
robot is in state � ). Note that Markov models assume that the
transition and observation probabilities are determined only
by the current state of the robot (the “Markov assumption”).

In our case, the Markov model is partially observable be-
cause the robot may never know exactly which state it is in.
Instead, it maintains a belief of its current state in form of a
probability distribution  ����� over the states ��� �

. The prob-
ability distribution is updated in two ways: When an action
report � is received, indicating a move or turn, the new prob-
abilities become:

�')(�*,+!-,.��/(�. �����103254 6*,7%8�9;: <�8>=@?/*,7BA  ���C� � � �����D4 �'E.��/(�. ��� � �

where 2 is a normalization factor to ensure that the probabil-
ities all sum to one (this is necessary because not all actions
are defined for all states). When a sensor report  is received
from sensor � , indicating that a feature has been detected, the
probabilities become:

 ')(F*G+!-,.F�H(�. �����I0J254  � �! "� ���K4  'L.F�/(M. �����
The Markov model is constructed from three sources of

information: the topology of the environment (which we pre-
sume can be easily obtained), general knowledge about of-
fice environments (such as that corridors are straight and per-
pendicular to each other), and approximate metric knowledge
(obtained either from rough measurements or from general
knowledge, such as the fact that, in our building, corridors
are two meters wide and all doorways are between two and
ten meters apart).

The map information is initially encoded as a graph of
nodes and edges (Figure 1). A node represents a junction
between corridors (and/or doorways or foyers). Nodes are
connected by a pair of directed edges, which are augmented
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Figure 1: Augmented Topological Map
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Figure 2: Group of Four Markov States

with approximate length information in the form of a prob-
ability distribution over possible lengths. Rooms and foyers
(not shown) are also represented in the map.

The rest of this section describes how the augmented topo-
logical map is compiled into a Markov model.

Modeling Locations
Each Markov state encodes both the orientation and location
of the robot. To insulate the model from low-level control
aspects (such as turning to avoid obstacles), we encode the
commanded heading of the robot rather than its instantaneous
orientation. Since our corridors are straight and perpendicu-
lar to each other, it is sufficient to discretize orientation into
the four compass directions: North, South, East, West. The
spatial locations of the robot are also discretized. While more
fine-grained discretizations yield more precise models, they
also result in more memory requirements and more time-
consuming computations. We use a resolution of one meter,
which we have found to be sufficient.

Since our Markov states encode both orientation and lo-
cation, four states are needed to fully represent each spatial
location. Three actions are modeled: turning right 90 de-
grees ( � ), turning left 90 degrees (

�
), and going forward one

meter ( � ). Right and left turn actions are defined for every
state (Figure 2). Since they correspond to changes in com-
manded heading and not to changes in position, we have
found it sufficient to model them deterministically. Some
states also have “forward” actions defined for transitioning
from location to location (note that forward actions are not
defined for states that face walls). Dead-reckoning uncer-
tainty is modeled by a self-transition, that is, the forward ac-
tion transitions with some probability from a state into itself.

Modeling Corridors
Our representation of topological edges is a key to our ap-
proach. If the edge lengths are known exactly, it is simple to
model the ability to traverse a corridor with a Markov chain
that has forward actions between those states whose orienta-
tions are parallel to the corridor axis (Figure 3a). The model
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Figure 3: Representations of Topological Edges

becomes more complex when only approximate edge lengths
are known. While one approach is to represent a corridor
edge by a single Markov state [Nourbakhsh et al., 1995], this
loses the ability to utilize dead-reckoned information in doing
position estimation.

Another approach is to model an edge as a set of paral-
lel Markov chains, each corresponding to one of the possible
lengths of the edge (Figure 3b). The transition probabilities
into the first state of each chain are the same as the probability
distribution over edge lengths associated with the topological
map (see Figure 1). Each forward transition after that is de-
terministic (modulo dead-reckoning uncertainty — note that
the identity transitions are not shown in these figures). While
this representation best captures the actual structure of the en-
vironment, it is relatively inefficient: the number of states is
quadratic in the maximum length of the edges.

As a compromise between fidelity and efficiency, our cur-
rent implementation models edges by collapsing the paral-
lel chains in a way that we call the “come from” semantics
(Figure 3c). In this representation, the spatial location of a
Markov state is known relative to the topological node from
which the robot comes, but its location relative to the end of



www.manaraa.com

0.50.5

0.50.5
l r

f lr

f

f

f

(for clarity, only actions from the highlighted nodes are shown)

A

DC
B

Figure 4: Representation of Corridor Junctions

the chain is uncertain (e.g., state B is 1 meter from A, but is
between 1 and 3 meters from C). For each state, the forward
transition probabilities are derived from the edge length prob-
ability distributions. When edge length uncertainty is large,
the “come from” semantics can save significant space over
the “parallel chains” representation. For example, for an edge
between 2 and 10 meters long, the “come from” semantics
needs only 80 states to encode the edge, compared to 188 for
the “parallel chains.”

Each edge in the “come from” semantics is actually rep-
resented using two chains, one for each of the corridor di-
rections. Thus, if the robot travels some distance and then
turns around, the model limits the positional uncertainty as
the robot travels back to the last topological node. This is
particularly useful when the robot realizes it has missed a
junction, and turns around to head back.

Modeling Junctions and Doorways
Unfortunately, we cannot represent corridor junctions simply
with a single group of four Markov states, since the spatial
resolution of a Markov state is one meter, but our corridors
are two meters wide.

While one approach would be to represent junctions us-
ing four (two by two) groups of four Markov states each, we
achieve nearly the same result with four groups of two states
each, which both saves space and makes the model simpler
(Figure 4). The basic idea is that turns within a junction are
non-deterministic, with equal probability of transitioning to
one of the two states of the appropriate orientation in the junc-
tion. For example, in entering the junction of Figure 4 from
the South, the robot would first encounter state A, then state
B if it continues to move forward. If it then turns right, it
would be facing East, and would transition to either states C
or D with equal probability. This models agrees with how the
robot actually behaves in junctions. In particular, it captures
the uncertainty that arises due to the fact that the robot turns
with a non-zero turn radius.

Doorways can be modeled much more simply, since the
width of our doors is approximately the resolution of the
Markov model. A single exact-length edge (Figure 3a) leads
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through a door into a room. Similarly to [Nourbakhsh et al.,
1995], doorway edges have an associated probability  that
the door is open. Then, the observation probabilities associ-
ated with seeing a doorway are:
 � �! "� door � 0  4 ;� �� "� open-door ��� �����  � 4 ;� �� "� closed-door �
Modeling Foyers and Rooms
We are developing adequate models for large open spaces
(foyers and rooms). Currently, we tessellate a foyer into a
matrix of locations. From each location, the forward action
has some probability of transitioning straight ahead, but also
some probability of self-transitioning and moving to diago-
nally adjacent states. While this model corresponds well with
our observations about how the robot actually performs in
such spaces, it is deficient in that it requires the exact length
and width of the foyer. Although this model could also be
used to represent rooms, it is probably overly complex for
that purpose: we are currently leaning towards representing
rooms using a single group of four states, each of which has
a high probability of self-transitioning.

4 The Navigation System Architecture
The overall system architecture consists of five main compo-
nents (Figure 5). The robot controller performs local obstacle
avoidance while trying to travel along a commanded head-
ing. The sensor interpretation component converts raw data
from the wheel encoders and sonar into higher-level action
reports (heading changes and distance traveled) and sensor
reports (features detected). Position estimation uses these re-
ports and the Markov model to maintain a belief about the
current location of the robot. Action selection uses this proba-
bility distribution, along with a goal-directed policy produced
by the planner, to choose directives which are sent to the con-
troller to change the robot’s heading or make it stop. These
directives are also fed back to sensor interpretation, since in-
terpretation of features is often heading specific.

To date, the work reported here has focused on position
estimation and action selection. The robot controller and
sensor interpretation components are essentially the same as
those used in our previous work in landmark-based naviga-
tion [Simmons, 1994], and we have not yet put significant
effort into the planner.
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Figure 6: Occupancy Grid with Corridor Features

Robot Controller
The main task of the robot controller is to head in a given
direction while avoiding obstacles. To do that, it uses a po-
tential field approach [Arkin, 1987], in which obstacles are
represented as repulsive forces and the desired heading is an
attractive force. The robot sums the force vectors and locally
moves in that direction, modulating its speed if necessary to
avoid collisions.

The directives supplied to the controller are to make it stop,
go, and change heading. While the Markov model represents
turns and moves as discrete actions, in reality the robot does
not stop to turn, but continually moves forward, even while
turning. In addition, heading changes are cumulative, so that
two successive right turn directives, for instance, results in a
smooth 180 degree turn.

Sensor Interpretation
The task of the sensor interpretation component is to convert
the continual motion of the robot into discrete action reports,
and to produce sensor reports from the raw sensor data that
indicate the observation of high-level features, such as walls
and corridor openings.

The sensor interpretation component periodically receives
reports from the robot’s dead-reckoning, which uses internal
sensors (wheel encoders) to estimate position and orientation.
This information is combined with the robot’s commanded
heading to produce a “virtual odometer” that keeps track of
the distance traveled along that heading. This is needed so
that the distance the robot travels in avoiding obstacles is not
counted in determining how far it has traveled along a corri-
dor. After each meter of cumulative travel, the sensor inter-
pretation reports that one forward action has occurred. Simi-
larly, the robot controller reports when its commanded head-
ing has changed, and this is reported (in units of 90 degree
turns) to the position estimation component.

Sonar readings are bundled into three “virtual sensors” that
report observations of walls and openings of various sizes
(small, medium and large) in front of the robot and to its
immediate left and right. An occupancy grid [Elfes, 1989],
which probabilistically combines sonar sensor readings taken

over time as the robot travels, is used to filter noisy sensor
readings and produce a more global view of the robot’s sur-
roundings (Figure 6). The occupancy grid is processed by
projecting a sequence of rays perpendicular to the robot’s
commanded heading (thus, it is independent of the robot’s
actual orientation), until they intersect an occupied grid cell.
The rays are then analyzed geometrically. If the end points
of the rays can be fit to a line reasonably well (i.e., with
a small chi-squared statistic), then a wall has been detected
with high probability. An opening is indicated by a contigu-
ous sequence of long rays.

Position Estimation
The virtual sensor and action reports are used to update the
probability distribution over the Markov states according to
the update rules shown in Section 3. These rules need the
transition probabilities for actions  ��� � � ������� and the obser-
vation probabilities for virtual sensors  � �� "� ��� . The tran-
sition probabilities are derived from edge length distribu-
tions in the map plus knowledge of dead-reckoning uncer-
tainty. The observation probabilities must be estimated or
learned. To simplify the problem, rather than characteriz-
ing each individual state, we characterize classes of states,
such as wall, open (corridor junctions), closed-door,
and open-door. Then, we create a table containing fea-
ture/state class pairs that encode the probability that the sen-
sor reports a given feature when the robot is next to that par-
ticular class of states. For example, the left virtual sensor is
partially characterized by: (wall �open) = 0.05 (small opening �open) = 0.20 (medium opening �open) = 0.40 (large opening �open) = 0.30 (nothing �open) = 0.05

These probabilities indicate that junctions are most com-
monly detected as medium-sized openings, but can often be
seen as large or small openings (although they are hardly ever
confused for walls). The observation probabilities of the fea-
ture nothing, which is used to indicate that a sensor has
made no determination, are chosen so that, if the sensors re-
ports nothing, the overall probability distribution is unaf-
fected. While these values represent our best guesses, we
have implemented learning algorithms to determine action
transition and observation probabilities more precisely.

In general, forward actions tend to increase positional un-
certainty, due to non-deterministic transitions, while obser-
vations tend to decrease it. In certain cases, however, the
effects of a forward action can dramatically decrease uncer-
tainty. This occurs when there is some probability that the
robot is in states with no forward actions ( ����#������� ). Such
states are prevalent — for instance, all states within a corridor
whose orientation is perpendicular to the axis of the corridor
(see Figure 3). In practice, this effect can be seen when the
robot turns at an intersection: Before the turn, there is often
some probability that the robot has not yet reached the inter-
section. After the robot has turned and successfully moved
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forward a bit, the probability that it is still in the original
corridor drops to zero. We believe this is a major factor in
keeping the positional uncertainty low, even when the robot
travels long distances.

When incorporating sensor reports, care must be taken to
preserve the Markov assumption. Since reports by the same
sensor at the same location are not independent (since they
depend on the same occupancy grid cells), multiple reports
cannot be aggregated. Instead, we retract the old sensor report
before updating with the new report, which can be done easily
as long as no action updates occur between the two reports.

Action Selection
To control the robot’s goal-directed behavior, our planner (see
below) associates a directive � ����� ��� with each Markov
state (note: these should not be confused with the set of ac-
tions ������� defined for the Markov model). The four directives
are: change heading by 90 degrees (turn right), -90 degrees
(turn left), 0 degrees (go forward), and stop. The action se-
lection component chooses new directives based on the prob-
ability distribution of the Markov model.

A straightforward strategy is to choose the directive as-
sociated with the state � that has the highest probability
[Nourbakhsh et al., 1995]. While this strategy may be ade-
quate when each topological entity is associated with a single
Markov state, it does not work well in our models. For exam-
ple, since corridor junctions are modeled using several states
for each orientation, it is reasonable to consider all of their
recommendations when deciding which directive to issue.

A selection strategy with this property is the “best-action”
strategy, in which the probability mass of each directive is
calculated and the one with the highest total probability is
chosen:

arg ������ 8
	 6*F8�9;: � ?H*,A�� �  �����
A variation on this is the “best-above-threshold” selection

strategy, which chooses the best directive only if its proba-
bility mass is above some threshold, otherwise the current
directive remains in effect. We have investigated this strategy
because we thought it would reduce the chances of making
wrong moves due to spurious false positive sensor reports.
Experimental evidence, however, both in simulation and with
the real robot, indicate that the “best-action” strategy is in fact
superior in reducing the number of erroneous moves.

Reinforcement learning researchers, such as [Chrisman,
1992; Tenenberg et al., 1992], often use other voting schemes,
such as the following: Let �� �������C� be the shortest distance
from state � � �

to the goal if the robot executes directive
� ��� ����� and then behaves optimally. The strategy chooses
the directive with the smallest expected goal distance:

arg ������ 8
	 6*F8�9  ��������;�������C�
This scheme allows one, for example, to choose the second
best action if all states agree on the second best action, but
disagree on the best action. While this scheme is attractive,

we did not implement it because it would require substantial
changes to our path planner.

Planning

While opportunities abound for applying probabilistic plan-
ning techniques to this problem, we currently use a very sim-
ple symbolic path planner, a variant on the one used for our
landmark-based navigation.

The planner uses A* search in the augmented topological
map to find a path to the goal. It uses this plan skeleton to
assign preferred headings to the edges and nodes in the map,
based on the expected total travel distance to the goal and
estimates about how long it takes to turn. Directives are then
associated with the Markov states: a “go forward” directive
is assigned to each state whose orientation is the same as the
preferred heading of its associated topological entity. The
remaining states are assigned actions that will turn the robot
towards the desired heading. Finally, a “stop” directive is
assigned to the goal state and to nearby states (which helps
to increase the total probability mass of the “stop” directive
when the robot reaches the goal).

Our planner, and the voting heuristics used in action se-
lection, are clearly inferior compared to optimal POMDP so-
lutions (in which directives are assigned to probability dis-
tributions, rather than individual states). For example, un-
like POMDP algorithms, our planner cannot decide to take
actions whose only purpose is to gather information. Some-
times, however, it can be advantageous to gather additional
information that helps the robot to reduce positional uncer-
tainty, even if that requires it to move away from the goal
temporarily.

At present, however, it is infeasible to determine even ap-
proximate POMDP solutions given the size of our state spaces
and our real-time constraints [Lovejoy, 1991]. [Cassandra et
al., 1994], for instance, report that their POMDP method can
solve a problem with 23 states in under half an hour, while the
model for just half of one floor of our building has over 3000
states. We still intend to explore POMDP algorithms, how-
ever, given recent advances in approximate algorithms [Parr
and Russell, 1995] and the hope that the restricted topology
of our Markov models might make them more amenable to
efficient solutions.

5 Experiments

While Markov models are expressive and relatively efficient,
they make strong independence assumptions. Empirical ev-
idence is needed to determine whether, in this case, the
Markov assumption is satisfied well enough to yield good,
reliable navigation performance. In this section, we report on
experiments in two environments for which the Markov as-
sumption is only an approximation: a realistic simulation of
a prototypical office corridor environment, and an actual mo-
bile robot navigating in our building. The same navigation
code is used for both sets of experiments, since the simulator
and the robot have the exact same interfaces.
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Figure 7: An Office Corridor Environment

best-action best-above-threshold
path freq. time speed freq. time speed

s cm/s s cm/s
ABE 12 68.2 25.7 5 63.6 27.5
ABCDE 3 79.7 29.5 8 81.0 29.0
ABCKCDE — — — 2 104.1 N/A

Table 1: Experiment 1

5.1 Experiments with the Simulator

Two navigation experiments were performed with the robot
simulator in the corridor environment shown in Figure 7. The
topological map has 17 nodes and 36 directed edges. We
modeled the uncertainty of the length of a topological edge
as a uniform distribution over the interval ranging from 80
to 150 percent of the real length of the edge. The resulting
Markov model has 1184 Markov states. The initial positional
uncertainty for both experiments is minimal: the initial prob-
ability for the robot’s actual location is about 90 percent. The
remaining probability mass is distributed in the vicinity of the
actual location.

In the first experiment, the task was to navigate from ���&� �����
to C � �

� . The preferred headings assigned by our planner
are shown with solid arrows. Note that the preferred heading
between B and C is towards C because, even though the goal
distance is a bit longer, this way the robot does not have to
turn around if it overshoots B. We ran a total of 15 trials for
both the best-action and the best-above-threshold strategies,
all of which were completed successfully (Table 1).

The robot has to travel a rather long distance from ���&� �����
before its first turn. Since this distance is uncertain and corri-
dor openings are occasionally missed, the robot occasionally
overshoots B, and then becomes uncertain whether it is really
at C or B. However, since the same directive is assigned to
both nodes, this ambiguity does not need to be resolved: the
robot turns left in both cases and then goes straight. The same
thing happens when it gets to D, since it thinks it may be at
either D or E. The robot eventually corrects its beliefs when,
after turning left and traveling forward, and it detects an open-
ing to its left. At this point, the robot becomes fairly certain
that it is at E. A purely landmark-based navigation technique
can easily get confused in this situation, since it has no ex-
pectations about seeing this opening, and can only attribute it
to sensor error (which, in this case, is incorrect).

In the second experiment, the robot had to navigate from

best-action best-above-threshold
path freq. time speed freq. time speed

s cm/s s cm/s
JFI 11 60.6 28.9 8 65.4 26.8
JFGFI 2 91.5 25.7 — — —
JFGHGFI 1 116.0 23.7 5 120.2 22.9
JFGFGFI 1 133.0 22.2 — — —
JFGDGFI — — — 2 176.5 N/A

Table 2: Experiment 2
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Figure 8: Wean Hall at CMU

���&� ����� to � � �
� . The preferred headings for this task are

shown with dashed arrows. Again, we ran 15 trials for both
action selection strategies (Table 2).

For reasons that are similar to those in the first experiment,
the robot can confuse G with F. If it is at G but thinks it is
probably at F, it turns right and goes forward. However, when
it detects the end of the corridor but does not detect a right
corridor opening, it realizes that it must be at H rather than
I. Since the probability mass has now shifted, it turns around
and goes over G, F, and I to the goal. This shows that our nav-
igation technique can gracefully recover from misjudgements
based on wrong sensor reports – even if it takes some time to
correct its beliefs. It is important to realize that this behavior
is not triggered by any explicit exception mechanism, but re-
sults automatically from the way the position estimation and
action selection interact.

5.2 Experiments with Xavier
Xavier, our indoor mobile robot, is built on an RWI B24 base
and includes bump sensors, sonars, a laser range sensor, and
a color camera on a pan-tilt head. Control, perception and
planning are all carried out on two on-board, multi-processing
486-based machines.

As mentioned, the probabilistic navigation system uses
a modified version of the planner and essentially the same
robot controller and sensor interpretation components as our
landmark-based navigation system. Thus, differences in per-
formance can be directly attributed to the different naviga-
tion approaches. In addition, to facilitate comparisons we ran
Xavier along the same routes as reported in [Simmons, 1994].
In particular, the robot traversed from point S to G and back
again (Figure 8) in some trials (45 meters each way), and in
some circumnavigated around the building (150 meters).

The topological map used to represent the corridors in Fig-
ure 8 has 95 nodes and 180 directed edges. As with the sim-
ulator trials, the edge lengths ranged uniformly from 80 to
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150 percent of the real corridor length. The resulting Markov
model has 3348 states.

In 25 trials (mostly back and forth between points S and
G), the robot successfully reached its goal in 22 cases, aver-
aging 30 cm/s while traversing a total of over a kilometer. In
two of those cases, the robot missed seeing a junction, but
turned back when it realized it had probably gone too far, and
successfully continued. This success rate of 88% compares
favorably with the 80% rate reported in [Simmons, 1994].

The main difference is that the probabilistic navigation
scheme uses all available sensor information to help local-
ize itself. For example, while the probabilistic navigation
uses the robot’s dead-reckoning to directly constrain its po-
sition estimates, the landmark-based navigation uses metric
information in only two ways: it ignores landmarks that are
reported before a minimum distance has been traveled, and
turns around after a maximum distance. Similarly, the prob-
abilistic navigation scheme utilizes all sensor reports, while
the landmark-based scheme pays attention only to those fea-
tures that might correspond to the expected landmark. One
effect of this is that the probabilistic navigation scheme tends
to turn the robot earlier when entering a junction: it often
gets enough confidence from a single sensor report, while the
landmark-based scheme needs several (e.g., seeing both an
opening to the side and the end of the corridor ahead) before
it decides to turn.

The few remaining failures are attributable to two sources:
Occasionally the action selection heuristics enter a limit cy-
cle and continually turn the robot (we suspect this is due to
a software bug). More fundamental is that the local obstacle
avoidance will, especially in foyers, move the robot a signif-
icant distance orthogonally to its commanded heading. Since
this is not currently reported, the robot’s position estimation
becomes very inaccurate. We can remedy this by reporting
side motions and adding a “slide” action to the Markov model
that will cause the appropriate state transitions.

6 Future Work and Conclusions
This paper has presented our first efforts at using partially
observable Markov models (POMDPs) for autonomous of-
fice navigation. The approach enables a robot to utilize all its
sensor information, both positional and feature-based, in or-
der to robustly track its location. A simple path planner and
action selection heuristics are used to direct the robot’s goal
heading. Advantages of this approach include the ability to
account for uncertainty in the robot’s initial position, actuator
uncertainty, sensor noise, and uncertainty in the interpretation
of the sensor data. Also, by integrating topological and metric
information, the approach easily deals with uncertainty aris-
ing from incomplete descriptions of the environment.

We are extending this work in several directions. We have
implemented methods, based on EM learning techniques, that
passively refine metric map information as well as the sensor
and action models, and will be testing it with Xavier. In ad-
dition, we are developing improved learning techniques that
are more resistant to violations of the Markov assumption.

We intend to pursue planning and action selection algorithms
that approximate optimal POMDP policies, and to compare
their performance to the greedy heuristics described here. Fi-
nally, we intend to add new sources of sensor information,
primarily vision-based feature detectors.

The implemented probabilistic navigation system has
demonstrated its reliability, both in simulation and on Xavier,
even in the face of significant uncertainty. We believe that
such probabilistic navigation techniques hold great promise
for getting robots reliable enough to operate unattended for
long periods of time in complex, uncertain environments.
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